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The 2-D INADEQUATE experiment is a useful experiment for determining carbon structures of organic
molecules, which is known for having low signal-to-noise ratios. A non-linear optimization method for
solving low-signal spectra resulting from this experiment is introduced to compensate. The method relies
on the peak locations defined by the INADEQUATE experiment to create boxes around these areas and
measure the signal in each. By measuring pairs of these boxes and applying penalty functions that rep-
resent a priori information, we are able to quickly and reliably solve spectra with an acquisition time
approximately a quarter of that required by traditional methods. Examples are shown using the spectrum
of sucrose.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The INADEQUATE experiment [1–5] is a 2-D NMR [6] technique
used to find carbon-carbon bonds, with the full spectrum giving
complete information on the carbon skeleton of the sample mole-
cule [7–11]. However, the low sensitivity of this type of experi-
ment, forcing long experiment times is well documented [12–17].

In this communication, we propose a method for processing the
data from an INADEQUATE experiment. It is based on previous im-
age denoising and regularization methods [18–21] to allow the use
of this experiment at much lower signal-to-noise ratios than are
possible using traditional Fourier transform methods. Since there
is much a priori information available and the spectral components
are very simple, the INADEQUATE experiment is particularly ame-
nable to more sophisticated processing compared to other 2D
experiments. We show an example of a speed-up of approximately
four times in this communication, and based on early experimen-
tation, these results are typical.

Before we start an INADEQUATE experiment, we know the sin-
gle quantum frequencies (hence, all possible double-quantum fre-
quencies); it is their assignment that is unclear. The correlations in
the INADEQUATE plots all appear as simple AB spectra. Since both
parts of a correlation come from the same double-quantum coher-
ence, the two parts of the correlation should be mirror images [22],
although pathological offset effects [23] may slightly distort the
ll rights reserved.
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symmetry. These key facts allow us to build penalty functions
who guide the optimization toward the global minimum. The pro-
cess makes use of image regularization techniques to smooth the
lineshapes as the optimization progresses. The combination of
these allows us to find a complete set of carbon bonds from an
INADEQUATE spectrum too noisy for traditional methods to be ap-
plied, significantly reducing the required experiment time. While
the examples shown in this paper use unprocessed data, running
the Fourier transforms in MATLAB, this method will work equally
well with processed data as the processing will not change any
of these assumptions made. Many existing techniques developed
for INADEQUATE spectra rely on complex line-shape fitting and
large numbers of assumptions on the form of the experimental
results [24–31]. Our technique is based on the magnitude of the
signal, making this technique insensitive to phase errors in the
experiments and uses comparably few assumptions about the form
of the experiment in order to simplify our model.

2. Optimization approach

Our approach is based, primarily, on the signal intensity present
in a set of pre-defined locations based on the 13C chemical shifts. In
the INADEQUATE experiment, these locations are well-defined by
the 1-D carbon spectrum. With a list of chemical shifts for all the
carbons in the molecule we are testing, we are able to locate all
possible peak locations and know which locations of peaks could
indicate what bond. We draw boxes around all of these locations,
large enough to contain the full peak and account for small shifts
of location caused by the coupling constants and isotope effects
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(testing shows 32 points along the F2 axis to be sufficient for an
experiment using 4k points). In order to provide more intelligent
estimates to compensate for high noise levels, we provide several
penalties based on a priori knowledge of the experiment and basic
chemistry. We penalize large differences between signal level in
paired boxes as the INADEQUATE experiment will typically have
equal signal in each of the two correlated boxes and we force the
number of bonds to any single carbon to be between one and four.

The method presented allows and requires some user input. We
require an estimate of the level of connectivity in the molecule, as
this controls the number of bonds we reject or accept as the algo-
rithm runs. We allow an initial guess of the bonds that will be pres-
ent, in small molecules this is not required, but in large molecules
any prior knowledge will greatly improve the run-time of the
method.
O
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2.1. Variables

The two sets of variables we use are intended to meet the goals
of the optimization:

p: to determine the bonds present in a molecule, given a 2-D
INADEQUATE spectrum; and
S: to create a cleaner image of the given spectrum, clearly
showing the locations of the peaks and bonds determined.

The column vector, p, contains one entry for each bond (a total
of n choose 2 entries, where n is the number of carbons present).
Each entry contains a value ranging from 0 to 1 that represents
the probability of its associated bond being present in the mole-
cule. The entry of p relating to a specific bond, between carbons i
and j, is given by the notation pij. This notation does not indicate
the index of an entry, but rather indicates the contents by noting
the two carbons being referenced. We use this non-standard con-
vention in order to simplify the written problem. The entries in this
vector are ordered with respect to the bonds they represent. For
each carbon i, there is an ordered list of bonds from i M i + 1 to
i M n (where M means ‘‘bonded to’’) where i ranges between 1
and n � 1. The carbons themselves are numbered by their chemical
shifts in increasing order.

The variable S is a sparse array with dimensions equal to those
of the original Fourier transformed spectrum. S has the important
structure of being zero-valued outside of the pre-determined boxes
that may contain peaks (determined by the chemical shifts of the
potentially bonded carbons), meaning that we eliminate noise
from all regions that we know cannot contain a correlation. Each
of these boxes is made up of a series of entries, referred to as sk.
This structure minimizes the number of variables we need to solve
in order to create a new image of the spectrum without a loss of
data. A small scale example of this type of structure is shown in
Eq. (1). In order to simplify several later equations, we use the
notation Sij to refer to a sub-array of S corresponding to the
box centred at the location (xi,xi + xj), where we could see one
of the peaks indicating a bond of i to j.
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Fig. 1. The structure of sucrose, showing the six-membered glucose ring(G) and
five-membered fructose ring(F) with numbered carbons.
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In the example in Eq. (1), the variables s1, s2,s3 correspond to
one box (if this represents a bond between carbons 1 and 2 we re-
fer to it by S12). In a real spectrum we use wider boxes with many
more variables per box.
2.2. Model

Our optimization problem minimizes the sum of the terms gi-
ven in (2)–(7) and is constrained by (8) and (9). The solution of this
minimization problem gives us both desired results; a low-noise
image of the spectrum and a list of carbon bonds present in the
molecule.

min km�Sk2 ð2Þ
þ k1kdxSk2 ð3Þ
þ k2
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s:t: pij P 0 ð8Þ
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Term (2) attempts to minimize the difference between the two-
dimensional Fourier transform of the measured spectrum (m) and
the optimized image of the spectrum ðSÞ. This gives us a final im-
age whose peaks are located and shaped in the same way as those
in the original spectrum as their size changes. This term also tends
to minimize the difference in signal level between the two arrays,
meaning that we redistribute the signal of the spectrum rather
than reducing or increasing it as we modify the values in the boxes
of S.

For term (3), we define

kdxSk2 ¼
X

i

s:t: si and siþ1 are horizontally
adjacent in the same box

ðsi � siþ1Þ2;

as a short form for the L2 difference norm in the x (F2) dimension,
taking into account the sparsity of S. This will tend to minimize
the differences between adjacent points. Minimizing these differ-
ences promotes smoothness of the lines in this direction without
trying to fit the peak to a particular line shape, which would require
the incorporation of other variables. We do not regularize in the F1

dimension as we do not generally expect smoothness in this
direction.

Term (4) penalizes signal in the boxes of S if they are consid-
ered unlikely to correspond to a bond and penalizes the values in
p if they correspond to low-signal areas of S. These values will
be increased in the opposite scenario. This promotes increasing
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Fig. 2. The numbering of the sucrose peaks with the structural numbering on the top and the numbering used in our method on the bottom.
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Fig. 3. Averaged Fourier transform of all eight collected data sets. Here we can see
most of the structure, but several bonds remain difficult to detect, most notably:
F2 M F1, F3 M F4 and G5 M G6. Red boxes indicate locations at which we should see
peaks related to these bonds, but cannot.

1 The program is available on request.
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signal in areas of likely peaks and a decrease of signal in areas of
unlikely peaks. In the end, signal will be completely removed from
locations we have decided will not contain peaks and will be con-
centrated in the areas of high certainty peaks.

Term (5) penalizes the signal in two paired boxes of S if the two
boxes have a large difference in signal level. This means that a cor-
relation will become less likely if its two related areas have very
different signal levels.

Term (6) is a quartic penalty function designed to keep the total
number of bonds for a single carbon between one and four with
two bonds being the most likely. The term achieves this by taking
each carbon i and summing over the bond probability between i
and every other carbon, j to get the total value of the bonds to i.
This sum is then subtracted from 2 to shift the center of the quartic
to +2 and the result of this is put to the fourth power to generate
our function. This function was chosen because it remains fairly
flat in the center and sharply rises afterward meaning that two
bonds to a carbon is not penalized at all, one or three bonds are
lightly penalized and outside that specified range, the penalty is
strong.

Term (7) penalizes the sum of the probabilities in p, or the num-
ber of likely carbon bonds found. This function simply adds to-
gether all the bond probability values and minimizes this value.
This is necessary because we do not have an a priori estimate for
the peak heights, so we are only penalizing peaks which we do
not believe correspond to bonds and large differences in paired
peak heights. We would therefore expect a minimum in the objec-
tive function when many bonds are predicted, even ones with very
low intensity peaks. This penalty prevents that non-descriptive
minimum from occurring. In practice, investigators will have a
good estimate of the total number of bonds in an unknown, or par-
tially known, molecule and this information would be incorporated
into this penalty.

2.3. Implementation

The problem is dominated by bi-quadratic terms; being qua-
dratic in both S and p separately. This fact suggests that the prob-
lem can be split into two parts and solved using an alternating
Gauss–Seidel approach to solve alternatively for S and for p.

In the first, unconstrained, problem (10) we solve for S. The
second part (11) is a constrained problem that estimates the like-
lihoods of all possible bonds, thereby solving for p. The result of
this split was a large increase in the speed of the solution. We
implement this problem in a MATLAB program1 using standard
routines included in the Mathworks optimization toolbox. We load
the raw time series data into MATLAB using matNMR[32] and we
run a standard MATLAB Fourier transform before normalizing the
spectrum to make the largest value 1 in order to limit the size of
the necessary constants. In initial tests using the sucrose spectra at
a size of 128 � 4096, the solution using the single (combined) prob-
lem took between 10 and 12 h, while the split problem took between
2 and 10 min to reach comparable solutions.

min
S
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The first (unconstrained) problem results in the redistribution
of signal from the original spectrum which causes an increase of
peak area in the possible bond locations and a decrease of peak
area across the rest of the spectrum. This means that we will
achieve a clearer image of the spectrum.

min
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The second (constrained) problem estimates the bond probabilities.
This splitting is the most natural and it results in two subprob-

lems with desirable performance properties. The original problem
is a large, non-quadratic, constrained problem. When we split it
into two however, the first subproblem is a large, but mostly
quadratic problem and the second, while non-quadratic and
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Fig. 4. We can see here that running our method on two averaged data sets gives us
better information than the average of all eight using traditional methods,
constituting a decrease in experiment time of a factor of more than four.
constrained, involves many fewer variables than the original prob-
lem. This relationship is maintained for all sizes of molecules.

The penalty parameters ki and li are scaling factors for each of
the terms we wish to minimize. Generally these constants do not
need to be modified from default values where we assign:
k1 = 10, k2 = 15, k3 = 1, l1 = 4. However, the experiment is rather
sensitive to the value of l2, which represents the degree of connec-
tivity, and this value must be changed according to the amount of
signal and the connectivity of a molecule.
3. Results

The experiment we performed was with a concentrated sucrose
(see Figs. 1 and 2) solution (approximately 80mg of sucrose in
0.5 mL), run on a Bruker AV 500MHz spectrometer equipped with
a 5 mm room-temperature inverse-geometry probe. The pulse se-
quence we used was the standard INADEQUATE experiment
including gradients to enhance pathway selection. Instead of run-
ning a single experiment overnight, we run several smaller exper-
iments sequentially in order to help prevent any computer or
spectrometer errors from affecting the entire dataset. Each of these
experiments result in what we term a block; when averaged, these
blocks give the results of the full experimental time. We gathered a
total of eight blocks of data, each measuring 512 points in T1 by
4096 in T2 using 32 scans with a scan delay of one second and a
90� pulse with width 15 ls taking slightly over 6 h to run. The opti-
mization is run using the optimization toolbox of MATLAB 7.9.0 in-
stalled on a department server using a dual-core AMD Opteron
processor at 2.6 GHz. For small problems like this (under 20 or so
carbons), the MATLAB solver is sufficiently fast, however for much
larger problems as we expect to encounter, we will need to explore
options for faster solvers.

In Fig. 3, we see the Fourier transform of the averaged value of
all eight blocks. We can visually determine seven of the ten bonds
reliably, but we have two bonds where only one of the two peaks
are visible and one where neither is visible. In Fig. 4 we see a Fou-
rier transform of the averaged value of only two blocks with the re-
sult of running our method on that data. We see that even with
only a quarter of the data, the final result of our method is much
clearer than what can be seen in Fig. 3. Using two of the eight
blocks was the minimum we could reliably use, but there existed
a few combinations (all including one specific block) of two blocks
that we could not solve. The results for all other pairs of blocks look
highly similar to the results shown here.
4. Conclusion

We have a shown a method of solving for carbon bonds from
INADEQUATE spectra by using image regularization and optimiza-
tion techniques. Despite the limited amount of testing so far, the
early results of this method of solving for carbon bonds from INAD-
EQUATE spectra are promising. We have shown that we can reduce
the experiment time required to solve from the spectrum of su-
crose from over 48 h using traditional methods to around 12 using
our method. We plan to expand our testing to a wide variety of
molecules as soon as possible and we expect similar speed-ups
in all cases.
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